...
Now we must determine the polarity of each coil within each phase. Connect one A coil and one B coil to the drive, and command clockwise motion. If it spins counterclockwise, swap the wire in B+ with the one in B-. Now, you know the positive side of each of these two coils. Label these wires A1+, A1-, B1+, and B1-. Now, remove coil B1 and insert coil B2. Again, command clockwise motion. If the motor turns counterclockwise, swap the wire in B+ with the one in B-. Once it spins clockwise, label the wire in the B+ terminal "B2+" and the wire in the B- terminal "B2-". Finally, remove the A1 coil and insert the A2 coil. Command clockwise motion; if the motor spins counterclockwise, swap the wire in A+ with the one in A-. Label the one in the A+ terminal "A2+" and the other one "A2-".
You've now got all the leads labeled: A1+, A1-, A2+, A2-, B1+, B1-, B2+, and B2-. Here is the time to decide whether to hook it up in series or parallel configuration. Parallel wiring gives a higher torque at high speeds, but heat generation limits the motor's duty cycle to 50%. Series configuration allows the motor to be run constantly. Series is more commonly used.
Drive connector | Motor wires (parallel) | Motor wires (series |
---|
A-centertap | x | A1-, A2+ |
A+ | A1+, A2+ | A1+ |
A- | A1-, A2- | A2- |
B+ | B1+, B2+ | B1+ |
B- | B1-, B2- | B2- |
B-centertap | x | B1-, B2+ |
Celebrate! Your motor should be running now.
...